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Abstract. The pseudo-spin model for a double layer quantum Hall system with the total landau level filling
factor ν = 1 is discussed. In contrast to the “traditional” model where the interlayer voltage enters as a
static magnetic field along pseudo-spin hard axis, taking into account the realistic experimental situation,
in our model we interpret the influence of applied voltage as a source of additional relaxation process in
the double layer system. We show that the Landau-Lifshitz equation for the considered pseudo-magnetic
system well describes existing experimental data and reduces to the dc driven and damped sine-Gordon
equation. As a result, the mentioned model predicts novel directed intra-layer transport phenomenon in
the system. In particular, unidirectional intra-layer energy transport can be realized due to the motion
of topological kinks induced by applied voltage. Experimentally this should be manifested as counter-
propagating intra-layer inhomogeneous charge currents proportional to the interlayer voltage and total
topological charge of the pseudo-spin system.

PACS. 73.43.Lp Collective excitations – 05.45.Yv Solitons

1 Introduction

The anomalous transport and tunneling properties of
quantum Hall bilayers with the total Landau level fill-
ing factor ν = 1 results in a steady interest in such sys-
tems during the recent years [1–11]. Quantum Hall bilayers
consist of electrons confined in closely separated two di-
mensional semiconductor layers in applied high magnetic
fields. In the absence of interlayer voltage, each layer of
the system has a filling factor ν1 = ν2 = 1/2. Since the
layers are identical, the system can be phenomenologically
described via the pseudo-spin formalism [2]. In particular,
an electron in one layer acquires the pseudo-spin pointing
“up”, while in the other layer it has the pseudo-spin point-
ing “down”. The z component of the overall pseudo-spin
vector specifies the charge imbalance between the layers.
It is clear that the system has a lower energy when the
pseudo-spin points neither up nor down, but rather lies
in the plane, reflecting the fact that in the ground state
electrons are equally distributed between the two layers.
Therefore, within this formalism, double layer quantum
Hall system is treated as an easy plane ferromagnet with
a hard axis anisotropy and an electron tunneling between
the layers corresponds to the spin flips in the pseudo-spin
language.

This is a quite satisfactory model for isolated double
layer systems. However, problems start to arise as soon as

a e-mail: khomeriki@hotmail.com

one considers a real experimental situation with applied
interlayer voltage and induced tunneling current. Tradi-
tionally, in the phenomenological Hamiltonian, interlayer
dc voltage is interpreted as a constant magnetic field ap-
plied along z axis [2]. Although this model correctly de-
scribes the physics at low interlayer voltages [3], it fails to
describe experimentally observed current-voltage charac-
teristics [1] for large interlayer voltages. The point is that,
the introduction of interlayer voltage as a homogeneous
static magnetic field is correct if the voltage is uniformly
applied along a whole bilayer. However, in the real ex-
perimental situation [1] the contacts are connected at the
edge of the double layer. Therefore, we propose here to
consider the two subsystems. One of the subsystems con-
sists of the bilayer with zero interlayer voltage which is
connected with the second subsystem, represented by the
bilayer “reservoir”, with parameters defined by the exter-
nal leads. In addition we note that while the charge im-
balance of the bilayer right at the contact is solely defined
by the applied interlayer voltage, the charge imbalance of
the rest of the bilayer simply is forced to relax to this
nonequilibrium state. It is clear that the relaxation rate is
proportional to the sheet-contact conductivity.

As we shall demonstrate below, the proposed relax-
ation mechanism well describes experimental observations
by Spielman et al. [1]. In particular, the equations of mo-
tion in certain limit reduce to a generalized sine-Gordon
equation which, in the context of quantum Hall bilayers,
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was introduced in references [4,12,13]. On the other side
the sine-Gordon model leads to the prediction of directed
solitonic transport phenomenon [14]. This exotic effect can
be directly verified in the experiment.

In this paper we present the symmetry analysis [14]
and numerical simulations in order to show that the di-
rected inhomogeneous intra-layer current appears due to
propagation of topological excitations in a quantum Hall
bilayer. Moreover, we suggest the realistic experimental
set-up in order to observe this phenomenon.

2 The effective model

The effective Hamiltonian density of our phenomenolog-
ical model of double layer quantum Hall (pseudo) ferro-
magnet is given by:
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where the unit vector m(x, t) is an order parameter;
(mz = ν1 − ν2 describes local electrical charge imbalance
between the two layers); ρE is the in-plane spin stiffness, β
gives a hard axis anisotropy and ∆SAS is a tunneling am-
plitude. Then Landau-Lifshitz equations of motion, which
conserve the length of the local spin density, can be de-
rived as follows:
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where H is the effective pseudo-magnetic field.
We will consider below only the case of small charge

imbalances between the layers, which allows for further
reduction of the equations of motion. Particularly, in the
limit mz → 0, one can rewrite equation (2) as follows:

∂mz

∂t
= 2ρE

∂2ϕ

∂x2
− 2∆SAS sin(ϕ) (3)

∂ϕ

∂t
= 4βmz, (4)

where the phase variable ϕ is defined from the relation
mx + imy =

√
1 − m2

z exp(iϕ). Reminding that mz de-
scribes a local charge imbalance between the layers, equa-
tion (3) could be interpreted as the charge continuity equa-
tion with a damping term, where

JS = −2eρE
∂ϕ

∂x
, Jtun = 2e∆SAS sin(ϕ) (5)

are intra-layer current in each layer and interlayer tunnel-
ing current, respectively.

Now we must take into account the relaxation process
announced at the beginning. As it was already noted, the
bilayer near the contacts is described by the same Hamil-
tonian (1) adding just the Zeeman term ωmz/2, where
ω = eV/� includes interlayer voltage V and e is an elec-
tron charge. Then, in the stationary state the charge im-
balance of that part of the bilayer is expressed as

m0
z = ω/4β. (6)

The rest part of the bilayer (i.e. far from the contacts) will
relax to this nonequilibrium value with the relaxation rate
1/R, where R is a sheet+contact resistance. Therefore,
we have to modify equations (3) and (4) by adding the
relaxation term as follows:
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Further, substituting (8) into the continuity equation (7),
we finally obtain:
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Without the gradient term this equation for the first time
was suggested by Wen and Zee [12] (see also Refs. [4,13]).
The results of reference [12], as well as our numerical simu-
lations, suggest that there are completely different regimes
of the pseudo-spin dynamics for the high and low voltages.
In particular, in the first case V → 0 the analytical solu-
tion of (9) should be sought as:

ϕ = φ0, (10)

where φ0 is a constant quantity. Substituting (10) into the
equation of motion (9) we can define φ0 as follows:

2∆SAS sin φ0 = ω/R. (11)

Moreover, from (5) the expression for the tunneling cur-
rent reads:

Jtun = (e2/�)(V/R). (12)
The solution (11) defines the limits for the high and low
voltage regimes. Particularly, the solution (10), (11) holds
in the low voltage limit (eV/� � 2∆SASR), while in case
of high voltages (eV/� � 2∆SASR) the solution (10),
(11) cannot be used any more (since, in this limit, sinφ0

in (11) becomes larger than one).
For the case of high voltages the solution is sought as

the following combination:

ϕ = ωt + A sin(φ0 + ωt), A � 1, (13)

where the constants A and φ0 must be defined perturba-
tively by substituting (13) into the equation of motion (9)
(see Refs. [4,16]). As a result we obtain:
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4β
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, A =

8β/R

ω
√
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, (14)

and the dc component of tunneling current is given by:

Jtun = 2e∆SAS sin
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=
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It is easy to see that equations (12) and (15) qualita-
tively well describe the experimentally observed tunneling
current-voltage characteristics [1]. Indeed, at the low volt-
ages the current increases with voltage, while for the high
voltages the tunneling current decreases as 1/V 3.
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Fig. 1. Suggested experimental setup for observation of inho-
mogeneous counter propagating intra-layer charge currents by
applying an interlayer dc voltage on a quantum Hall bilayer.

3 Symmetry analysis and numerical estimates

In the consideration given above it was assumed that
the total topological charge of the system is zero. Con-
sequently, we obtain that the intra-layer current is zero
for any voltages according to the definitions (5). The situ-
ation, however, drastically changes if nonzero topological
charge is present in the system.

In order to carry out the symmetry analysis, we should
write down the expression for the density of energy flux
in the system (see e.g. Ref. [14]):

JE = −ρE
∂ϕ

∂x

∂ϕ

∂t
(16)

and define topological charge of the system as follows:

Q =
[
ϕ(+∞) − ϕ(−∞)

]
/2π. (17)

In general, the topological charge Q may take any inte-
ger value. For simplicity, in our numerical experiment we
choose an initial topological charge as Q = 1. Therefore,
we take (see Fig. 2):

ϕ(x) = 2πx/L, mz(x) = 0, (18)

where L is a length of double layer “ring” (see Fig. 1).
According to the general approach [14] let us consider the
following symmetry transformations:

x → −x, ϕ → −ϕ. (19)

These symmetry transformations leave the topological
charge (17) invariant but change the sign of the density of
energy flux (16). In this case the symmetry properties of
equations of motion becomes crucial. If the equations are
invariant under the symmetry transformations (19) the
averaged energy flux in the system is identically zero, oth-
erwise directed energy flux will exist [14]. In the present
case the equations of motion (9) are not invariant with re-
spect the symmetry transform (19). As a consequence, this
leads to the directed intra-layer energy transport for any
applied nonzero interlayer voltage. Similarly, for zero volt-
age equation (9) is invariant under the symmetry trans-
formation (19) and thus averaged energy flux should be
zero.

Fig. 2. Upper panel: schematic presentation of initial pseudo-
spin distribution with topological charge Q = 1. Lower panel
shows the pseudospin system behavior after application of in-
terlayer voltage. The topological charge becomes localized and
starts to move along the layer with a velocity proportional to
the applied interlayer voltage.

The numerical analysis of the motion equation (9)
completely agrees with the predictions of the symmetry
analysis. Thus, in the presence of nonzero total topologi-
cal charge in the system, directed energy transport should
be observed. Moreover, the direction of the transport can
be changed by inverting the sign of the voltage. Moreover,
we can further extend the analytical consideration noting
that the equation of motion (9) is nothing but dc driven-
damped sine-Gordon equation (see e.g. Refs. [17,18]). The
role of the dc driven force plays the term f = 4βω/R. As is
well known, sine-Gordon equation in the absence of driv-
ing force supports solitary wave solutions with nonzero
topological charge. These solutions often are termed as
kinks and are given by the following expression:

ϕ = 4 arctan

{
exp

[√
∆SAS

ρE
(x − x0)

]}
. (20)

Applied driving force leads to the motion of such ex-
citations, and the velocity of motion is proportional to
the driving force (applied voltage). Thus, by increasing
the voltage, the intra-layer energy transport (and con-
sequently the inhomogeneous charge current) can be in-
creased.

We have performed the numerical simulations with the
set of realistic physical parameters usually used in the
experiments [1,5,6]: β = 7 K, ρE = 1.6 × 10−16 Km2,
∆SAS = 10−4 K, 1/R = 10−3 K and we choose the value
of interlayer voltage V = 2× 10−5 V. The initial topolog-
ical charge of the system equals to one and the periodi-
cal boundary conditions are used in all numerical experi-
ments. The results are presented in Figures 3, 4 as space-
time evolution of local charge imbalance and local charge
density. As seen, topological kink forms and moves with
a constant velocity creating the inhomogeneous counter
propagating charge currents in each layer.

4 Conclusion

In the present paper the driven-damped pseudo-magnetic
model is elaborated in order to describe the dynamics in
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Fig. 3. Evolution of the local charge imbalance mz (upper
graph) and phase (lower graph) along the quantum Hall bars.
Besides the creation of charge imbalance, interlayer voltage
induces the motion of localized excitations in case of topologi-
cally nontrivial initial conditions.

quantum Hall bilayers at the total filling factor ν = 1.
By means of the symmetry analysis and numerical sim-
ulations it is shown that the directed transport exists in
the system in the presence of nonzero topological charge.
Moreover, the realistic experimental setup is suggested
for observing the suggested phenomenon. Initial nontriv-
ial topological charge [like presented in Exp. (18)] in the
system could be realized in the laboratory experiments by
application of a weak in-plane magnetic field along the
double layer “ring” (x direction in Fig. 1), for which a
commensurate pseudo-spin distribution appears. Then, by
switching off the in-plane field and applying an interlayer
dc voltage it will be possible to observe the inhomogeneous
counter propagating currents in each layer (see Fig. 2).
However, we note that the thermal fluctuations will re-
duce the topological charge in a double layer system (like
in case of narrow superconducting channels [19]) and as
a result the intra-layer current eventually should decrease
as well.
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Fig. 4. Intra-layer local charge current versus time and dis-
tance in the case of nonzero initial topological charge (Q = 1)
and nonzero interlayer voltage. In the numerical experiments
the periodic boundary conditions are used.
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